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Fig. 2. The deviation factor of guide wavelength, 8, versus the maximum

usable frequency, f .-

the guide wavelength obtained with TEM-wave approximation,
Aremo from the actual guide wavelength, A. Then the maximum
usable frequency, f, ..., for a given value of & can be expressed as
follows:

cn
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and ¢ is the velocity of light in vacuum.

The relationships between the tolerable deviation factor, 8, and
the maximum usable frequency, f,..., are shown in Fig. 2. This
frequency can be regarded as an upper limit, under which the
approximate formulas presented in this paper can be used within
a specific degree of tolerance for dispersion.

V. CoONCLUSION

Design parameters of micro—coplanar striplines on a variety of
substrate materials have been calculated with the rectangular
boundary division method. After a least-square curve-fitting pro-
cedure, a group of approximate formulas has been obtained for
practical use in the design of this new type of transmission line.
Experimental data were presented for comparison with theoreti-
cal results.
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Reflection of Electromagnetic Waves from
Rough Waveguides

R. GARCIA-MOLINA, J. RUIZ, R. CHICON, M. ORTUNO,
AND J. M. F. GUNN

Abstract —The reflection coefficient of a section of randomly rough
waveguide is calculated by using a coordinate transformation developed by
Mallick and Sanyal. We perform a perturbation analysis, assuming that the
amplitude of the roughness is small compared to the average width of the
waveguide. A drastic difference at long wavelengths between TEM on the
one hand and TE and TM on the other has been found.

I. INTRODUCTION

The effects of surface roughness on the propagation of electro-
magnetic waves is important in the fields of precision microwave
measurements and standards [1]. Roughness also partly deter-
mines the properties of the waveguides and the Q factor of
resonant cavities [2]. Previous work on rough waveguides has
focused on the limit where the width of the waveguide varies
slowly along its length [3], [4]. Much work has also been per-
formed on periodic corrugation of waveguides [1], [5] and on
scattering from random surfaces [6]. Physically the problem has
some similarity to the propagation of elastic waves (phonons)
down narrow wires [7].

In this paper we will calculate the effects of roughness on the
reflection coefficient of a section of waveguide. Decomposition
into modes is achieved by utilizing a coordinate transformation
analogous to that developed by Mallick and Sanyal {5]. The
significance of the coordinate transformation is that the bound-
ing, rough surface becomes a surface of constant coordinate,
facilitating the application of the boundary conditions. The prob-
lem reduces to a one-dimensional form, where we may use a
perturbation approach to deduce the reflection coefficient.
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Fig. 1 The upper (y =d + {(=)) and lower ( y = 0) surfaces of the waveguide

and the orientation of the coordinate axes.

II. ANALYSIS

We treat a waveguide defined by two perfectly conducting
planes, which are separated on average by a region of free space
of thickness d. The simplest form of roughness is for only one
plane to be affected and, moreover, for the roughness to depend
on only one coordinate parallel (perpendicular roughness is trivial
—it merely defines a new set of modes) to the waveguide. The
geometry is shown in Fig. 1. The conducting planes have the y
axis as their normal: the rough plane is the surface y =d + {(z),
where d denotes the average position and {(z) denotes the
fluctuation in the surface due to the roughness; the flat surface is
y=0. We assume that {(z)=0 for z <0 and z> L, so that we
can inject a well-defined wave into the rough guide.

The application of the boundary conditions at the rough sur-
face is clearly problematic in Cartesian coordinates. An orthogo-
nal coordinate system with the surface normals parallel to the
(local) basis vectors was constructed by Mallick and Sanyal [5}:

u=x
-’
Tz /d
u=z+A4(y,z). (1)

Here the function A(y,z) is determined by the requirement of
orthogonality of the new coordinates, given the definitions of u;
and u,. Since we may assume that the roughness varies on a
length scale that is large compared with the amplitude of the
roughness, we find (by analogy with Mallick and Sanyal [5])

1+

2

)]

1 3
A()’~u3)=57§'(“3) p

The full vector wave equation decomposes into two scalar wave
equations, whose solutions, {, generate the various components
of the fields (as long as we have the anisotropic roughness
described above and the appropriate initial conditions). So let us
consider a single scalar wave equation. Again following Mallick
and Sanyal [5], we see that in the limit of small roughness the
wave equation is separable: we may write (u, Uy, U;) =
Ui (u)) Vs (uy) Uy (uz).

Given the lack of an x (u,) dependence in the functional form
of the roughness, {(u;), and assuming that the waveguide is fed
in a u-independent manner, there will be no », dependence in
the solutions. Then the equations for the other two functions of
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separation, U, and Uj, are

v,
>+ k3U, =0 (3a)
dus
U o( )dU3 kg i U;=0 (3b)
4 Q(uy) — + | k- ——————— U, =
dus = duy | (1 g(u)/a) |
where kZ = v’ and
1 ¢(u)
0(us) = : (4)

d1+(u)/d’

We see that the disorder enters into (3b) in two places: in the
first-order term and in the denominator of the term involving the
eigenvalue associated with U;. We may readily eliminate the first
term, resulting in a form closer to that of a conventional wave
equation, using the following transformation:

1
V() =)o~ [“0(0) o]
:U3(”3)(1+§(“3)/d)71/z (5)

where, for convenience, we have chosen the lower limit of the
integral to be 0, i.e., the point where the roughness commences.
We have used the fact that (4) reveals Q(u;) to be a perfect
derivative. Thus the final form of (3b) is

k3
v (u3)+[(ko_m)

_(1/2) Q'( u3) _(1/4)Q2( “3)} V(u) =0. (6)

The boundary conditions (on the two planes) determine k,,
vielding a one-dimensional wave equation. The effect of the
roughness is to make the propagation constant vary with u,.

Let us return to discuss the reduction to two scalar wave
equations, which would be associated with the TE and TM
modes in the absence of roughness. In the presence of roughness
it is no longer possible, in general, to solve in terms of TE and
TM to z modes the direction of propagation. However it is still
possible to define TE and TM to x modes for the type of
(anisotropic) roughness considered here. Moreover if the initial
condition (associated with the way in which the waveguide is fed)
is independent of x, then we may still use cither. In that case the
TE to z modes are equivalent to the TM to x modes, and the TM
to z modes are equivalent to the TE to x modes. This may be
seen as a consequence of the independence of the solutions with
respect to u; in the equations for the field components [5].

Then the relations between ¢ and the field components for the
TM to z modes are

E=H,=H,=( H, = —iwed,,
ay 1 ay
E=- E= i ae ()
du, 1+¢(wy)/d dus
and for the TE to z modes we find
H=E=E=0 E = —iwpy,
Iy 1 Iy,
H,= : H,= : (8)

"~ du, 1+ 8(uy) /d du,

where . and i, are solutions of the scalar wave equation (3).
The boundary conditions for i are determined by those for the
fields at the planes (u, =0, d). They are E, = 0 for the TM mode
and E, =0 for the TE mode (i.e., in the new coordinate system
they are equivalent to the standard boundary conditions for
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smooth waveguides). This allows us to solve (3a) and to substi-
tute the value of k, into (3b), thus reducing the problem to a
one-dimensional form. The allowed values of k., are

ky=(nm)/d, ©)
By examination of Maxwell’s equations, in the new coordinate
system it may be shown that there is a mode which becomes the
TEM mode in the limit of zero roughness. The electric and
magnetic fields associated with this mode are transverse to the u,
direction and they do not depend on the u, coordinate, and can
be considered a special case of the TM mode with k, =0. The
nonzero values of n correspond to higher modes of propagation.
Now that the problem has been reduced to one dimension, it is
convenient to rewrite (6) as

V'(u) + [ k2 = Q(u)] V(u) =0

nx>1.

(10)
with
=i i, (1)

where k, takes the values specified in (9) depending on the mode
and () is

ki+0

Q(u) =ﬁu)_;%2§(ﬂ+0([§/d]z). (12)

We will now examine the behavior of a wave fed into a section of

rough waveguide; in particular we calculate the reflection coeffi-

cient of the section to “lowest order” in the roughness, {/d. To

that end we impose boundary conditions of the form
V(u) ~ tettv

uUu—00

(13a)

V(u) ~ e*u+re ke

u——00

(13b)

where ¢t and » are constants that we will now determine. The
boundary conditions for U(u) are identical, remembering that
the roughness only has a finite extent.

The differential equation (10) with the boundary conditions
(132) and (13b) is equivalent to the following integral equation
{81

V(u) =e’"“+—1~foo e Q) V(v) dv (14)

2ik J_ o

where "1~ " /(2ik) is the Green function for the waveguide
with no roughness. The reflection coefficient is defined in terms
of the Poynting vector, which is readily shown to be given by |r|*
(using also the fact that U(u) and V(u) are identical outside the
rough region). Since the roughness starts at u=0, we may
simplify the absolute value in the exponent in (14), and identify
r, implying

R(k) =

2
foo e Q(v)V(v) dv| . (15)
— o0
We cannot solve (14) exactly and will resort to a perturbation
treatment; the validity of this treatment relies on the reflection
coefficient being small. At zeroth order ¥V9(u) = ¢'** and we may
substitute this into the integral in (14) to give the reflection
coefficient in the first Born approximation (note that the propa-
gation constant has not changed to this level of approximation):

4k>

R(k) =;1§7i5|f(—2k)|2 (16)

where §(q) is the Fourier transform of {(u). The significance of
—2k is that it is the momentum transfer required for reflection.
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This expression is quite general, not being specific to the ran-
domly rough case.

For a periodically varying section of waveguide, the Fourier
transform, {(q), is proportional to the length of the section, L;
so the power spectrum (and hence the reflection coefficient) are
proportional to I2. However, for a random section, the reflection
coefficient itself is proportional to L [9]:

kg

2 2
(R(k)) =~ 5 {8200 [). (17)
We will now determine the average reflection coefficient for a
section of length L. To do this we must specify the statistical
characteristics of the roughness: for concreteness, we choose the

case of {(u) having Gaussian correlations and find

k?) P R
PETE: Lmce™°

(R(k)) =82 (18)
where 6 is the root-mean-square roughness. The factors of L and
82 are quite general [9], as is the factor of the correlation length,
g, if the correlations have a characteristic length scale.

Let us note the marked difference of the reflection coefficient
between the TE (or TM) and TEM modes as k — 0: in the
former case R diverges (since k, = k,, which is finite) and in the
latter tends to zero. The origin of this distinction is that the TEM
mode is increasingly (as k — 0) insensitive to fluctuations in the
width of the waveguide, whereas the TE mode retains its sensitiv-
ity, even as k — 0. The reason for the divergence is that the
perturbation, A(u), effectively is a uniform increase, or decrease,
in width of extent L. In general this distinction may not matter
in practical situations, as k -+ 0. We cannot trust the Born
approximation when R becomes comparable to unity.

An interesting feature that will arise at higher order is the
enhancement of backscattering [10] by a factor of 2, due to the
constructive interference between the time-reversed paths scat-
tered more than once. Another effect only occurring at higher
order is a change in the dispersion relation; this is unlike the
“ridge” case, where the change occurs already at first order. The
reason for this distinction is the lack of a predominant wave
vector in the rough case, which leads to the splitting of the
dispersion relation in the ridge case.

III. CONCLUSIONS

To conclude, we have utilized a transformation of coordinates
to calculate a general expression for the reflection coefficient of a
rough section of perfectly conducting waveguide. We find a
dramatic difference between the TEM mode on the one hand and
the TE and TM modes on the other.

ACKNOWLEDGMENT

J. R. and M. O. wish to thank Rutherford Appleton Labora-
tory for its hospitality. J. M. F. G. would like to thank the
Department of Physics of the University of Murcia for hospital-
ity extended to him during the preliminary stages of this work.

REFERENCES

[1] A. E. Sanderson, “Effect of surface roughness on propagation of the
TEM mode,” in Advances i Microwaves, L. Young, Ed. New York:
Academic, 1971, pp. 1.

[2] A. Hernandez, E. Martin, J. Margineda, and J. M. Zamarro, “*Resonant
cavities for measuring the surface resistance of metals at X-band fre-
quencies,” J. Phys E,vol 19, pp 222-225, Mar. 1986.

[3] G. Reiter, “Generahzed telegraphist’s equation for wavegudes of vary-
ing cross-section,” Proc. Inst. Elec. Eng., vol 106. pt B, suppl 13, pp
54-57, 1959



448
[4] D A Hill, “Reflection coefficient of a waveguide with shightly uneven
walls,” ILEL Trans Microwave Theory Tech , vol 37, pp 244-252, Jan
1989

[5] A.K Mallick and G S. Sanyal, “Electromagnetic wave propagation in a
rectangular waveguide with sinusordally varying width,” IEEE Trans
Microwave Theory Tech , vol MTT-26, pp. 243-249, Apr. 1978

[6] J A Kong, Electromagnenc Wave Theory New York. Wiley, 1986.

{71 M. J. Kelly, “Thermal anomalies in very fine structures,” J Phys. C,
vol 15, pp L969, 1982

[8] P M Morse and H Feshbach, Methods of Theoretical Physics.
York: McGraw-Hill, 1953, pp 1071

{91 W A Gardner, Introduction to Random Processes

lan, 1986, pp 57

Y A Kravtsov and A, T Saichev, “Effects of double passage of waves in

randomly 1nhomogeneous media,” Sov. Phys —Usp vol. 25, pp.

494-508. July 1982

New

New York Macmil-

Spectral Estimation for the Transmission Line
Matrix Method

JACK D. WILLS

Abstract — Spectral estimation for the transmission line matrix (TLM)
method by use of the discrete Fourier transform and fast Fourier trans-
form is reviewed. Error bounds are given and checked by means of a
numerical example. A new spectral estimation method based on Prony’s
method is presented for use with TLM. A numerical example shows that
the new method allows an order of magnitude reduction in the number of
iterations in the TLM method for equal accuracy.

I. INTRODUCTION

The transmission line matrix (TLM) method for microwave
circuit analysis calculates the time-domain variation of the elec-
tromagnetic fields in response to an arbitrarily chosen excitation
[1]. Because of the discrete nature of the TLM method the output
waveform is not a continuous function; it is a sequence of delta
functions of varying amplitude. These delta functions are sepa-
rated in time by Az, which depends on the cell size used in the
TLM model. This time is given by

Ar=Al/c

where A/ is the spacing between nodes and ¢ is the velocity of
light in free space.

Frequently the desired information from TLM analysis is not
the time-domain response but rather frequency-domain informa-
tion. A common use of TLM is to determine the resonant
frequencies of the characteristic modes of a microwave structure.
To obtain these frequency-domain data we must apply some
spectral estimation method to the time-domain output data. In
the remainder of this paper we shall review spectral estimation
methods presently in use for TLM, suggest an alternative spectral
estimation method which appears promising, and compare nu-
merical results for a typical problem.

II. PRESENT METHODS

In the original paper describing TLM, Johns and Beurle used
Fourier transform techniques to obtain the frequency response of
the circuit [2]. Specifically they applied the Fourier integral to the
sequence of delta functions which represented the time-domain
response of the circuit. By an application of the sifting property
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of the delta function, they expressed the frequency-domain re-
sponse as a pair of finite summations:

e (2] - 3 reosfort]

k=1

Im(F(%)) = %’ I, sin(27rké>\{)

k=1

(D)

(2

where F(Al/A) is the frequency response, I, is the output
impulse response at time ¢ = k(A//c), and NI is the total num-
ber of iterations used in the TLM method.

We can then form either |F(Al/A)| or |F(Al/M\)* (which are
analogous to voltage magnitude or power respectively) and plot
this as a function of frequency. Resonant frequencies of the
microwave circuit correspond to peaks (local maxima) of the plot.

These equations are written in a normalized form. Johns and
Beurle rescaled so as to make the interval between pulses unity
rather than Az. Thus they divided all times by Az and multiplied
all frequencies by Atz. We note that

A Al Al Al
7=- _Aff_x

(3
which gives the frequency variable used in (1) and (2). By
Nyquist’s criterion, f<1/2A¢, which ensures that 0 < Al/A <
0.5.

There are two sources of error in determining resonant fre-
quency in this manner. The first is a truncation error. One can
only run the TLM simulation for a finite number of iterations,
which we denote by NI. This has the effect of viewing the true
(infinitely long) time-domain response through a rectangular
window. The duration of this window is NJA¢. In the frequency
domain, the effect of this windowing is to convolve the true
frequency spectrum with the function

Al
Al sin( wNIAtT)
medow(_;) =———Tl_'
ﬂNIAtT

(4)

The effects of this convolution are twofold. It widens the peaks
in the frequency response plot, and the side lobes of the sin x /x
function cause the side lobes due to one response peak to overlap
the main lobe of another response peak. The result is that the
observed local maxima of the frequency response are shifted
away from their true values. Johns has derived an error bound for
this shift [3]. For two response peaks of equal amplitude, sepa-
rated by normalized frequency S = A//X, Johns found the maxi-
mum truncation error AS, to be bounded by

trunc

3

AS, —.
S(NIz)”

trunc

<=*

()

An additional error source arises in finding the peaks in the
response curve. While the frequency response given by the finite
summation in (5) is a continuous function of frequency, we can
only evaluate this equation at a finite number of points. If we
evaluate the frequency response at NF points equally spaced
across the interval (0, 0.5) any peak we find may be shifted from
its true position by a normalized frequency of +1/4NF. This

0018-9480 /90 /0400-0448$01.00 ©1990 IEEE



