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Fig. 2. The deviatlmr factor of guide wavelength, 8, versus the mammum

usable frequency, ~max.

the guide wavelength obtained with TEM-wave approximation,

A TEM, from the actual guide wavelength, A. Then the maximum
usable frequency, j,,~., for a given value of 8 can be expressed as

follows:

(5)
‘“”’ = 4h~{o.5+[l::log,o (1+ w/h)]’}

where

q=

and

1–8

~fi”+-; ‘0’” (6)
o

A TEM –A

8=
A TEM

and c is the velocity of light in vacuum.

(7)

The relationships between the tolerable deviation factor, cY,and

the maximum usable frequency, ~~,X, are shown in Fig. 2. This

frequency can be regarded as an upper limit, under which the

approximate formulas presented in this paper can be used within

a specific degree of tolerance for dispersion.

V. CONCLUSION

Design parameters of micro-coplanar striplines on a variety of

substrate materials have been calculated with the rectangular

boundary division method. After a least-square curve-fitting pro-

cedure, a group of approximate formulas has been obtained for

practical use in the design of this new type of transmission line.

Experimental data were presented for comparison with theoreti-

cal results.
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Reflection of Electromagnetic Waves from

Rough Waveguides

R. GARCiA-MOLINA, J, RUIZ, R. CHICON, M. ORTUfiO,

AND J. M. F. GUNN

Abstract —The reflection coefficient of a section of randomly rough

wavegnide is calculated hy using a coordinal e transformation developed by

Mallick and Sanyaf. We perform a pertnrbal ion analysis, assuming that the

amplitude of the roughness is small compared to the average width of the

wavegnide. A drastic difference at long wavelengths between TEM on the

one hand and TE and TM on the other has been found.

I. INTRODUCTION

The effects of surface roughness on the propagation of electro-

magnetic waves is important in the fields of precision microwave

measurements and standards [1]. Roughness also partly deter-

mines the properties of the waveguides and the Q factor of

resonant cavities [2]. Previous work on rough waveguides has

focused on the limit where the width of the waveguide varies

slowly along its length [3], [4]. Much work has also been per-

formed on periodic corrugation of waveguides [1], [5] and on

scattering from random surfaces [6]. Physically the problem has

some similarity to the propagation of elastic waves (phonons)

down narrow wires [7].

In this paper we will calculate the effects of roughness on the

reflection coefficient of a section of waveguide. Decomposition

into modes is achieved by utilizing a coordinate transformation

analogous to that developed by Ma[lick and Sanyal [5]. The

significance of the coordinate transfo~mation is that the bound-

ing, rough surface becomes a surface of constant coordinate,

facilitating the application of the boundary conditions. The prob-

lem reduces to a one-dimensional form, where we may use a

perturbation approach to deduce the reflection coefficient.
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Fig. 1 The upper (y = d + ((:)) and lower ( y = O) surfaces of the waveguide

and the orientation of the coordinate axes.

II. ANALYSIS

We treat a waveguide defined by two perfectly conducting

planes, which are separated on average by a region of free space

of thickness d. The simplest form of roughness is for only one

plane to be affected and, moreover, for the roughness to depend

on only one coordinate parallel (perpendicular roughness is tnviaf

—it merely defines a new set of modes) to the waveguide. The

geometg is shown in Fig. 1. The conducting planes have the y

axis as their normal: the rough plane is the surface y = d + {( z),

where d denotes the average position and ~(z) denotes the

fluctuation in the surface due to the roughness; the flat surface is

y=O. We assume that .((z) =0 for z<O and z> L, so that we

can inject a well-defined wave into the rough guide.

The application of the boundary conditions at the rough sur-

face is clearly problematic in Cartesian coordinates. A orthogo-

nal coordinate system with the surface normals parallel to the

(local) basis vectors was constructed by Mallick and Sanyaf [5]:

U,=x

Y

“2=“1+{(z)/d

u3=z+A(y, z). (1)

Here the function A( y, z) is determined by the requirement of

orthogonality of the new coordinates, given the definitions of UI

and Uz. Since we may assume that the roughness varies on a

length scale that is large compared with the amplitude of the

roughness, we find (by analogy with Mallick and Sanyal [5])

(2)

The full vector wave equation decomposes into two scalar wave

equations, whose solutions, ~, generate the various components

of the fields (as long as we have the anisotropic roughness

described above and the appropriate initiaf conditions). So let us

consider a single scalar wave equation. Again following Mallick

and Sanyal [5], we see that in the limit of small roughness the

wave equation is separable: we may write $( UI, U2, U3) =

U1(ZJ, )U2(U2)LJ, (U3).

Given the lack of an x ( UI ) dependence in the functional form

of the roughness, .(( U3), and assuming that the waveguide is fed

in a u, -independent manner, there will be no u, dependence in

the solutions. Then the equations for the other two functions of

separation, Lj and U3, are

(3a)

d2U3 d~

[

k:
—+ Q(u3)~+ k;–
du; 1U,=0 (3b)

3 (l+{(u3)/d)2

1 (’( U3)
Q(u3)=z1+{(u3)/d (4)

We see that the disorder enters into (3b) in two places: in the

first-order term and in the denominator of the term involving the

eigenvalue associated with U3. We may readily eliminate the first

term, resulting in a form closer to that of a conventional wave

equation, using the following transformation:

P’(u3) =U3(u3)exp (-:(3Q@
=U3(u3)(l +((u3)/d) -’” (5)

where, for convenience, we have chosen the lower limit of the

integral to be O, i.e., the point where the roughness commences.

We have used the fact that (4) reveals Q( U3) to be a perfect

derivative. Thus the final form of (3b) is

[( k;
V“( U3 ) + k; –

(l+{(u,)/d)’ 1

1-(1/2) Q’(u3)-(1/4)Q’(u3) V(u3) =0. (6)

The boundary conditions (on the two planes) determine kz,

yielding a one-dimensional wave equation. The effect of the

roughness is to make the propagation constant vary with t+.

Let us return to discuss the reduction to two scalar wave

equations, which would be associated with the TE and TM

modes in the absence of roughness. In the presence of roughness

it is no longer possible, in general, to solve in terms of TE and

TM to z modes the direction of propagation. However it is still

possible to define TE and TM to x modes for the type of

(anisotropic) roughness considered here. Moreover if the initial

condition (associated with the way in which the waveguide is fed)

is independent of x, then we may still use either. In that case the

TE to z modes are equivalent to the TM to x modes, and the TM

to z modes are equivalent to the TE to x modes. This may be

seen as a consequence of the independence of the solutions with

respect to UI in the equations for the field components [5].

Then the relations between + and the field components for the

TM to z modes are

El= H~=H2=0 H, = – imc~h,

1
E3 = ~ (7)

1+.f(u3)/d dU2

and for the TE to z modes we find

HI= EZ=E3=0 El = – iup~,:

1
H3=– % (8)

l+((u~)/d duz

where +1: and +M are solutions of the scalar wave equation (3).

The boundary conditions for + are determined by those for the

fields at the planes ( U2 = O, d ). They are E3 = O for the TM mode

and El = O for the TE mode (i.e., in the new coordinate system

they are equivalent to the standard bounda~ conditions for
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smooth waveguides). This allows us to solve (3a) and to substi-

tute the value of kz into (3 b), thus reducing the problem to a

one-dimensionaf form. The allowed values of k2 are

kz = (nT)/d, n>l. (9)

By examination of Maxwell’s equations, in the new coordinate

system it may be shown that there is a mode which becomes the

TEM mode in the limit of zero roughness. The electric and

magnetic fields associated with this mode are transverse to the US

direction and they do not depend on the Uz coordinate, and can

be considered a speciaf case of the TM mode with kz = O. The

nonzero values of n correspond to higher modes of propagation.

Now that the problem has been reduced to one dimension, it is

convenient to rewrite (6) as

V“(u)+[ k2–fl(u)]V(u)=0 (lo)

with

kZ=k; _k’ ~, k~+O (11)

where kz takes the values specified in (9) depending on the mode

and O(u) is

Q(u) =
.r’( u) ;$( ~)+q[~,~]z) .

(12)

We will now examine the behavior of a wave fed into a section of

rough waveguide; in particular we calculate the reflection coeffi-

cient of the section to “lowest order” in the roughness, ~/d. TO

that end we impose boundary conditions of the form

V(u) - te’ku (13a)
U+m

V(u) - e’h”+re-’hu (13b)
U+—cc

where i and r are constants that we will now determine. The

boundary conditions for U(u) are identical, remembering that

the roughness only has a finite extent.

The differential equation (10) with the boundary conditions

(13a) and (13b) is equivalent to the following integral equation

[8]:

V(U) = e“’” + &~_m e’~l”-’’l~(u) V(u) du (14)
‘x

where e’” If’- “1/(2ik) is the Green function for the waveguide

with no roughness. The reflection coefficient is defined in terms

of the Poynting vector, which is readily shown to be given by Ir 1’

(using also the fact that U(u) and V(u) are identical outside the

rough region). , Since the roughness starts at u = O, we may

simplify the absolute value in the exponent in (14), and identify

r, implying

2

R(k) =+ ~_mme’~’’fl(u)V(v) dv (15)

We cannot solve (14) exactly and will resort to a perturbation

treatment; the validity of this treatment relies on the reflection

coefficient being small. At zeroth order P’”(u) = e’h u and we may

substitute this into the integral in (14) to give the reflection

coefficient in the first Born approximation (note that the propa-

gation constant has not changed to this level of approximation):

R(k) ‘41 f(-2k)12 (16)

where ~(q) is the Fourier transform of 1(u). The significance of

– 2k is that it is the momentum transfer required for reflection.

This expression is quite general, not being specific to the ran-

domly rough case.

For a periodically varying section of waveguide, the Fourier

transform, ~(q), is proportional to the length of the section, L;

so the power spectrum (and hence the reflection coefficient] are

proportional to L2. However, for a random section, the reflection

coefficient itself is proportional to L [9]:

(R(k) )=j$(lf(-2k) [2). (17)

We will now determine the average reflection coefficient for a

section of length L. To do this we must specify the statistical

characteristics of the roughness: for concreteness, we choose the

case of {(u) having Gaussian correlations and find

k:

(R(k) )=82~Lfioe-c’” (18)

where 8 is the root-mean-square roughness. The factors of L and

82 are quite general [9], as is the factor of the correlation length,

u, if the correlations have a characteristic length scale.

Let us note the marked difference of the reflection coefficient

between the TE (or TM) and TEM modes as k ~ O: in the

former case R diverges (since k. ~ kz, which is finite) and in the

latter tends to zero. The origin of this distinction is that the TEM

mode is increasingly (as k ~ O) insensitive to fluctuations in the

width of the waveguide, whereas the TE mode retains its sensitiv-

ity, even as k -+ O. The reason for the divergence is that the

perturbation, A ( u), effectively is a uniform increase, or decrease,

in width of extent L. In generaf this distinction may not matter

in practical situations, as k -H O. We cannot trust the Born

approximation when R becomes comparable to unity.

An interesting feature that will arise at higher order is the

enhancement of backscattering [10] by a factor of 2, due to the

constructive interference between the time-reversed paths scat-

tered more than once. Another effect only occurring at hiy~er

order is a change in the dispersion relation; this is unlike the

“ridge” case, where the change occurs already at first order. The

reason for this distinction is the lack of a predominant wave

vector in the rough case, which leads to the splitting of the

dispersion relation in the ridge case.

III. CONCLUSIONS

To conclude, we have utilized a transformation of coordinates

to calculate a generaf expression for the reflection coefficient of a

rough section of perfectly conducting waveguide. We find a

dramatic difference between the TEM mode on the one hand and

the TE and TM modes on the other.
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Spectral Estimation for the Transmission Line

Matrix Method

JACK D. WILLS

Abstract — Spectral estimation for the transmission line matrix (TLM)
method by use of the discrete Fourier transform and fast Fourier trans-

form is reviewed. Error bounds are given and checked by means of a

numerical example. A new spectral estimation method based on Prony’s

method is presented for use with TLM. A numerical example shows that

the new method allows an order of magnitude reduction in the number of

iterations in the TLM method for equal accuracy.

I. INTRODUCTION

The transmission line matrix (TLM,) method for microwave

circuit analysis calculates the time-domain variation of the elec-

tromagnetic fields in response to an arbitrarily chosen excitation

[1]. Because of the discrete nature of the TLM method the output

waveform is not a continuous function; it is a sequence of delta

functions of varying amplitude. These delta functions are sepa-

rated in time by At, which depends on the cell size used in the

TLM model. This time is given by

At= Al/c

where Al is the spacing between nodes and c is the velocity of

light in free space.

Frequently the desired information from TLM analysis is not

the time-domain response but rather frequency-dom-ain informa-

tion. A common use of TLM is to determine the resonant

frequencies of the characteristic modes of a microwave structure.

To obtain these frequency-domain data we must apply some

spectraf estimation method to the time-domain output data. In

the remainder of this paper we shall review spectral estimation

methods presently in use for TLM, suggest au alternative spectraf

estimation method which appears promising, and compare nu-

merical results for a typical problem.

II. PRESENT METHODS

In the original paper describing TLM, Johns and Beurle used

Fourier transform techniques to obtain the frequency response of

the circuit [2]. Specifically they applied the Fourier integraf to the

sequence of delta functions which represented the time-domain

response of the circuit. By an application of the sifting property
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of the delta function, they expressed the frequency-domain re-

sponse as a pair of finite summations:

(2)

where F( A 1/ A ) is the frequency response, IL is the output

impulse response at time t= k ( A l/c), and NI is the total num-

ber of iterations used in the TLM method.

We can then form either \F(A1/A ) I or IF( Al/X) IZ (which are

analogous to voltage magnitude or power respectively) and plot

this as a function of frequency. Resonant frequencies of the

microwave circuit correspond to peaks (local maxima) of the plot.

These equations are written in a normalized form. Johns and

Beurle resealed so as to make the intervaf between pulses unity

rather than At. Thus they divided all times by At and multiplied

all frequencies by A i’. We note that

Atf=;f=;; f=: (3)

which gives the frequency variable used in (1) and (2). By

Nyquist’s criterion, f < l/2 At, which ensures that 0< A1/A <

0.5.

There are two sources of error in determining resonant fre-

quency in this manner. The first is a truncation error. One can

only run the TLM simulation for a finite number of iterations,

which we denote by NI. This has the effect of viewing the true

(infinitely long) time-domain response through a rectangular

window. The duration of this window is NIA t.In the frequency

domain, the effect of this windowing is to convolve the true

frequency spectrum with the function

F
(!) ‘ini7NrAt3

window
i= Al ‘

trNIAt T

(4)

The effects of this convolution are twofold. It widens the peaks

in the frequency response plot, and the side lobes of the sin x/x

function cause the side lobes due to one response peak to overlap

the main lobe of another response peak. The result is that the

observed local maxima of the frequency response are shifted

away from their true values. Johns has derived an error bound for

this shift [3]. For two response peaks of equal amplitude, sepa-

rated by normalized frequency S = Al/A, Johns found the maxi-

mum truncation error A S,,UnCto be bounded by

(5)

An additional error source arises in finding the peaks in the

response curve. While the frequency response given by the finite

summation in (5) is a continuous function of frequency, we can

only evaluate this equation at a finite number of points. If we

evaluate the frequency response at NF points equally spaced

across the interval (O, 0.5) any peak we find may be shifted from

its true position by a normalized frequency of + l/4NF. This

0018-9480/90/0400-0448$01.00 01990 IEEE


